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Introduction:

In most cost estimating applications at the NASA Langley Research Center (LaRC), it

is desirable to present predicted cost as a range of possible costs  rather than a single

predicted cost.  A cost risk analysis generates a range of cost for a project and assigns

a probability level to each cost value in the range.  Constructing a cost risk curve

requires a good estimate of the expected cost of a project .  It must also include a good

estimate of expected variance of the cost.

Many cost risk analyses are based upon an expert's knowledge of the cost of similar

projects in the past.  In a common scenario, a manager or engineer, asked to estimate

the cost of a project in his area of expertise, will gather historical cost data from a

similar completed project.  The cost of the completed project is adjusted using the

perceived technical and economic differences between the two projects.  This allows

errors from at least three sources.  The historical cost data may be in error by some

unknown amount.  The managers' evaluation of the new project and its similarity to the
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old project may be in error.  The factors used to adjust the cost of the old project may

not correctly reflect the differences.

Some risk analyses are based on untested hypotheses about the form of the statistical

distribution that underlies the distribution of possible cost.  The usual problem is not

just to come up with an estimate of the cost of a project, but to predict the  range of

values into which the cost may fall and with what level of confidence the prediction is

made.  Risk analysis techniques that assume the shape of the underlying cost

distribution and derive the  risk curve from a single estimate plus and minus some

amount usually fail to take into account the actual magnitude of the uncertainty in cost

due to technical factors in the project itself.

This paper addresses a cost risk method that is based on parametric estimates of the

technical factors involved in the project being costed.  The engineering process

parameters are elicited from the engineer/expert on the project and are based on that

expert's technical knowledge.  These are converted by a parametric cost model into a

cost estimate.  The method discussed makes no assumptions about the distribution

underlying the distribution of possible costs, and is not tied to the analysis of previous

projects, except through the expert calibrations performed by the parametric cost

analyst.

The Cost Risk Methodology:

A detailed approximation of the probability distribution underlying the cost of a project

can be obtained by viewing the engineering process as a tree structure with each node

in the tree being an engineering decision which adjusts the final project cost.  Each

possible limb of the tree culminates in a final project cost and can be described by a

specific parameter vector.  A Monte Carlo process over this complete parameter space

will provide and excellent approximation of the cost risk distribution.  However this

requires a PRICE run or parametric cost estimate for each parameter vector.  Few
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organizations including LaRC can afford this precision.  Thus at LaRC an alternate

approach was chosen.

A possible project cost of the above cost tree can be generated by adding one of either

the low, the perceived, or the high values  from each item on the WBS.  If the cost for

each item is selected  randomly, the sum will lie between the minimum and maximum

possible project cost.  Repeating this process a number of times produces an

approximation of the distribution of possible project costs.

The critical step in this method is generating a low,  a perceived, and a high cost for

each element on the Work Breakdown Structure (WBS)  for the project.  Each WBS

element  cost estimate is generated by querying the persons most familiar with that

WBS  item to obtain qualified estimates of the best-case, worst-case and perceived

value for each of the engineering process input parameters for that item.  In the

examples presented in this paper, the RCA PRICE parametric cost model is used.  Any

other parametric cost model can be used in exactly the same way under this

methodology.

For each element of the WBS, low, high and perceived values are elicited for each box

of the appropriate PRICE Input Data Worksheet (IDW).  For a hardware part or

assembly for instance, a PRICE H Basic Modes sheet would be used.  For example,

the expert would be asked to give a best engineering estimate of the weight of the item

to be produced based on item design, materials, manufacturing methods, and so on.

Estimates of the lowest likely weight and highest likely weight based on the same

engineering factors would be elicited.  Three values for each factor on the IDW would

be elicited in the same way.  These values are used to generate a low IDW, high IDW,

and a most likely IDW, each containing either the low, high or perceived value from

each box.  When these input sheets are run through PRICE-H, they produce three

parametric estimates for the cost of that item. The low and high estimates define an

unbiased estimate of the cost range for the item.   The third cost is a perceived estimate

of the item cost based on the expert's knowledge of the engineering factors involved in

the production of the item.
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A cumulative distribution plot of the cost sums represents the risk curve for project costs

with the median at the 50% point.  Low and high limits of cost are derived respectively

by selecting the sum of the low WBS item costs and the sum of the high WBS item

costs.

Example 1.

For the purposes of example, a data file was created by selecting ten data items from

several real data files.  Each data row contains a low,  a perceived, and a high estimate

for a single WBS element of a project.  The data, shown in Figure 1 becomes the input

file for the program "Cost_Risk" developed at LaRC.

Low        Perceived         High
37 66 66 
46 50 56 
40 44 69 
11 13 17 
53 65 80 
54 66 73 
40 68 97 
22 27 33 
15 17 19 
29 42 60

Figure 1.  Data Input Tableau.

When the program "Cost_Risk" is run one data item is selected at random from the

three data items on each line.  The data items are summed over the WBS set,

generating a possible project cost.  This process is repeated n times.  The interval

between the smallest and the largest cost sum is divided into k intervals or bins and

each of the n sums is tallied in the appropriate bin.  The distribution of sums within bins

is plotted in Figure 2.  This plot can be interpreted as the cost density distribution for the

project.
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Figure 2.  Project Cost Probability or Risk Density Function.

A cumulative plot of the cost sums across cost bins produces the Cost Risk curve

shown in Figure 3.  The values on the Y axis, here marked "Risk" is the probability that

the project cost will be at or below the coresponding cost on the X axis.  The cost

corresponding to the .5 risk point is an estimate of risk balance point for which there is

a 50/50 chance that the project can be completed for that cost.  Another value of

importance is the estimate of the distribution mean which gives the expected delivered

cost.  If the distribution is normal the median will equal the mean.  This has not been

found to true based upon estimates generated at LaRC.  In fact, the expected delivered

cost has generally been found to be considerably greater than the mean.  This would

indicate that the choice of the 50/50 cost would generally result in a cost overun.

Further, the ratio between the two compares favorably with NASA cost overun

experience.
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Figure 3.  Project Cost Probability or Risk Distribution Function.

Example 2.

The second example demonstrates the reduction of the range of uncertainty in the Cost

Risk curve when the final cost of some items in a system are known.  The cost

estimates shown in Figure 4. are for the same hypothetical project shown in Figure 1.

but in this case, the delivered cost of three of the items (lines 1, 4, and 6) are known.

This is typical of the later stages of a project where some some parts of the project are

complete and the actual cost is known.  It also is typical of proposals where the

purchase cost for some items are known, such as fixed price quotes, or projects for

which GFE is supplied.
Low         Perceived        High

54 54 54 
46 50 56 
40 44 69 
15 15 15 
53 65 80
66 66 66 
40 68 97 
22 27 33 
15 17 19 
29 42 60
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Figure 4.  Reduced Variance Data Input Tableau

When this data is run through the Cost_Risk program, using the same run parameters

as in Example 1, the cost risk density and cost  risk distribution curves shown in

Figures  5 and 6 is produced.  The shape of these curves remain about the same but

the range of costs on the X Axis is reduced.  This is due to the reduction of uncertainty

in the project cost.

Figure 5.  Reduced Variance Project Cost Probability or Risk Density Function.
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Figure 6.  Reduced Variance Project Cost Probability or Risk Distribution Function.

Conclusion

The initial challenge which led to the development of this technique was to devise a

method which used as much engineering definition and as few statistical assumptions

as possible in order to increase the credibility of cost estimates in the engineering and

management environment at LaRC.  The second challenge was to be able to afford the

method.  The method discussed has succeeded in  both challenges.

In practice it has been easy to obtain the additional sets of high and low parameters.

Since these parameters are derived from the expertise of the engineers and managers,

they feel the input to the parametric models is credible.  When they disagree with the

resulting costs, we review  the engineering process parameters with them and change

the input parameter set only if refined engineering definition justifies a change.

Expectedly, we often disagree with the managers and engineers on cost, but we do

agree with them that we have described the engineering process expectations as best

we can.  This provides a substantial degree of credibility.
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In practice the method takes only a small additional amount of time and two additional

parametric model runs.  The additional credibility is well worth the cost.

The resulting cost analysis benefits greatly from the additional perspective of variance.

Cost estimates at LaRC are performed at the very early stages of a project where one

would expect the estimating variance to be greatest.  Variances between the high and

low cost estimates experienced range from a factor of 2  to a  factor of 10.  These

factors seem to be quite consistent with the degree of engineering definition available.

The variances also are considerably greater than the variances shown,  for example, in

the output of the PRICE program.  PRICE variances correspond to the variance of cost

based upon the data to which the PRICE equations are fit, not to the variance of the

engineering process for a particular project.  The relatively large ratio between the

variances obtained with this method and the PRICE variances is consistent with

expectations.  As explained to a manager recently, this indicates that the estimating

precision of the PRICE model is far better than our ability to provide engineering

definition at early stages.  That adds another measure of credibility to the estimate.

The only actual data point to date resulted in an expected delivered cost which was

considerably greater than the 50/50 cost projection,  but in the end was approximately

ten percent less than actual.  Incidentally, this project estimate had a very wide

variance because of new processes being used.  Both engineering process definition

and cost estimating calibration uncertainties were included in input data.
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